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Abstrrrl. A Monte Carlo study is presented for the transport of  panicles interacting with 
a nearest-neighbour interaction in a two-dimensional percolating system which is connected 
by a sourcc at the one end and by a sink at the opposite end. Using mobile panicles as 
carriers, permeation of quantity such as charge (or mass) from source to sink is studied 
in a density gradient. The RMS displacement of carriers shows a nondiffusive power law 
behaviour. The permeability coefficient for the charge t ranspan depends non-monotonically 
on the carriers concentration fa above the percolation threshold and becamer constant 
near the percolation threshold; at a constant carriers concentration, it increases continuously 
on increasing the site concentration. 

Because of several new developments [ 1-10], such as anomalous diffusion, superuniver- 
sality, non-diffusive transport, critical slowing down, fractality and multifractality, etc, 
during the past decade, studying the transport properties of percolating systems has 
become one of the most active areas in recent years. Considerable progress has been 
made in understanding single particle transport and lattice gas diffusion in percolating 
systems [Z, 6-10]. However, many questions remain unanswered particularly on the 
non-diffusive motion [7, 111 in the presence of a biased field and long relaxation [12] 
time in an interacting lattice gas. Numerous random systems have also been studied 
experimentally [13-171 where transport of charged (i.e. ions and ionomers) and neutral 
particles through a random medium is involved. For example, the dielectric measure- 
ments [15] on the charge transport in a nafion membrane in various aqueous solutions, 
and the penetrant motion of plasticizers in  a polymeric matrix (PVC) [16] seem to 
indicate various transport phenomena which are not explained by the traditional 
theories [ 6 ]  based on either the lattice gas (with only hard core interactions) calculations 
or on the approximations that ignore strong correlations. Some of these random systems 
are successfully modelled [ 1,2] by one percolation mechanism o r  the other. 

The problem of transport in Coulomb gas has been noted for its difficulty due to 
long range interaction. Very little is known, beyond the preliminary computer simulation 
study [12], of the transport of charge particles in percolating systems. Gefen and 
Woods-Halley [I21 considered the motion of charged particles each with u n i t  charge 
density on a percolating cluster in which each empty site of the cluster was assigned 
a charge density of opposite sign such that the total charge of the whole system (the 
background negative charge plus the positive charge of the particles) is zero. Although, 
long range (Coulomb) interaction was incorporated in their study, the samples were 
relatively small. Furthermore, their investigations were concentrated mostly on the 
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non-equilibrium aspect, the growth of polarization in the presence of the field and  its 
decay as the field is switched off. Because of extremely long relaxation time, it is rather 
difficult to predict whether such slow motion of particles in percolating system leads 
to an  asymptotic power law behaviour or to a metastability as in the case of a single 
particle biased diffusion [ I l l .  One of the commonly studied quantities, the variation 
of the R M S  displacement with time, has not been analysed in detail. 

We intend to carry out a similar study on the transport quantities such as variation 
of the RMS displacement of the tracers and that of the centre of mass (a measure of 
polarization) with time and permeability but we restrict ourselves here to a nearest- 
neighbour ( N N )  interaction for simplicity. Further, we attempt to model the transpart 
in a field induced by a density gradient that may be closer to some of the experiments 
pointed out above. The background charges of the percolating clusters may capture 
some of the characteristics of the interacting gas (at least beyond the hardcore interac- 
tion) in which their inhomogeneous distribution (of empty sites on the clusters) leads 
to random but attractive interactions with neighbouring charged particles. In our  
previous studies [ IS]  of interacting gas in simpler systems (in a homogeneous lattice), 
we have observed a dramatic decrease in conductivity on increasing the range of 
interaction from hardcore (zeroth order) to the nearest neighbour. Therefore, for the 
first time, the investigation of the transport properties such as R M S  displacement and  
permeability of interacting gas in a quenched disorder medium of the percolating 
system even with an  N N  interaction with a gradient induced field (see below) might 
help understand the complex transport phenomena. We hope that we continue our  
systematic investigation to incorporate the effects of the long range interactions as the 
computing resources become available. 

The random system is modelled by a quenched site percolation [2] in which the 
geometric inhomogeneity is caused by the random distribution of conducting clusters 
of various sizes. Such random systems begin to conduct at the percolation threshold 
where the infinite network of conducting paths appears at the onset of percolation [2]. 
Therefore, we restrict ourselves to the conducting regime above the percolation thresh- 
old to ensure that the source and  the sink a t  the opposite ends are connected by the 
ramified path of the percolating cluster. The transport of charge (or mass) through 
such a random system is governed by stochastic motion o f  the charge carriers, not 
only through the inhomogeneous geometry but also in a potential gradient caused by 
a charge source at the one  end and a sink a t  the other (see below). The competition 
between the potential gradient and the ramified geometry makes the motion of the 
carriers very complex to understand. We examine R M S  displacements o f  the carriers 
and an effective permeability coefficient as a function of the volume fraction of the 
medium, concentration of the carrier and temperature. It is worth pointing out here 
that, in the dielectric measurements and PVC experiments [ 13-16] mentioned above, 
not only a variety of particulates with their charge and mass distributions are involved 
in their transport properties but also different kinds of interactions such as Coulomb, 
Lennard-Jones, hydrophobic, hydrodynamic, etc among them may influence their 
motion. To begin with, two type of particles (charged and neutral) are considered and  
we assume that the competing effects of the various interactions and their screening 
lead to an  N N  dominant interaction. 

We consider a two-dimensional lattice of size L,  x L, as in our previous study [18] 
but with an additional disorder of quenched percolating medium here. A charge source 
is connected with one end of the lattice with a sink at the opposite (the L,th column) 
along the x-axis. We randomly select a fraction p ,  of these lattice sites and assign them 
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a conducting (i.e. ‘allowed’) status. The remaining lattice sites of fraction (1 - p J  are 
forbidden to particle hopping. Clusters formed by connecting the N N  conducting sites 
thus constitute our inhomogeneous host medium. A fraction p of these conducting 
sites is then occupied by mobile particles. A particle can have a charge density one or 
zero. Initially, we distribute the charge among the particles to set u p  a linear charge 
density gradient of one  at the source and  zero a t  the sink. The empty sites on the 
clusters are assigned a charge density of opposite sign to keep the whole system neutral. 
For example, if there are N ,  charged particles in the system, then the charge density 
of each empty site is 

P.= - W N ,  (1) 

where N ,  = (1 - p )  x p .  x N with N = L, x Ly. Particles are not allowed to hop on the 
forbidden sites. 

The forbidden sites restrict the motion of mobile particles to the conducting clusters 
and the empty sites, with their negative charge density on the ramified clusters, attract 
charge particles which repel their neighbouring charged particles. Note that the back- 
ground charges are not only neutralizing the whole system as i n  previous studies LIZ], 
but also they provide inhomogeneous effective field (due to inhomogeneous distribution 
of empty sites) for accelerating the hopping of the carriers. Movement of the particles 
is governed by their energies in which a particle a t  site i and one of its neighbouring 
sites j ,  are selected randomly. If site j is not a forbidden site and  it is empty, then we 
calculate its interaction energy 

where index k runs over neighbouring sites. We evaluate the interaction energy E ,  for 
the configuration in which the particle and  the  hole positions as  well as their charges 
are exchanged. Now, as  in the Metropolis algorithm [19], if the change in energy A €  
(= E ,  - E,) < 0, then the particle is moved from site i to site j .  However, if A €  3 0, 
then the new configuration for the particle’s hop  is selected with a Boltzmann distribu- 
tion, exp(-AE/k,T), where k,,  is the Boltzmann constant and T is the temperature. 
Charge is also transferred along with the particle’s movement. If the site j is at the 
column connected by the source then a charge transfer (1 -p , )  is the amount of charge 
releases from the source as we set the charge density p, of this particle at site j to 
unity. If the site j is at the column connected by the sink then the charge transfer p, 
is added to the amount of charge absorbed by the sink and the charge density p, is 
set to zero. On the other hand, i f  the site j is occupied or  it is forbidden, then the 
particle remains at site j .  This process of selecting a particle, attempting to move and 
updating its charge density and charge transfer is repeated again and  again for all the 
particles for preset Monte Carlo steps (MCS); an  attempt to move each particle once 
is defined [19] as unit MCS time. A periodic boundary condition is used along the 
y-axis and an open boundary condition along the x-axis at the source and the sink. 

The computer simulation is performed at our mainframe DPS-90 machine. Most 
of the data are produced with the lattice size 6 0 x 6 0  with up to half a million time 
steps; the smaller lattices are used to test the reliability of our  data. During the 
simulation we monitor the following transport quantities periodically: RMS displace- 
ment of the particles (i.e. the tracers) and of their centre of mass, and the charge 
transferred at the source and at the sink as a function of both the site concentration 
p% as well as the carrier concentration p. From these data, we evaluate the exponent 
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for the rms displacement and the permeability coefficient [17,20] for the charge 
transport across the percolating clusters. Figure 1 shows a typical variation of the R M S  

displacement of the centre of mass, R,,, with time 1 at p,=0.70 (above percolation 
threshold pT = 0.592) and temperature T (= k , T )  = 2.0. Fluctuation in the data gives 
us an idea about the stochastic motion of the particles in the stochastic geometry of 
the charged clusters. 

A typical variation of the RMS displacement of the carriers with time on a log-log 
p!n! is shown in figure 2. The s!ope of the !inear fit gives us an es!irtla!e nf the power 
law exponent k for the R M S  displacement R,, 

( 3 )  

We have estimated the exponent k at various site concentration for several values of 
particle concentration p and the result is presented in figure 3 at a fixed temperature 
T = 2.0. Despite the fluctuations, we see that these data points show a clear trend in 
the variation of the exponent in which it increases from a minimum value of about 
0.30 around p,=0.60 to a maximum saturation as high as 0.46 at p ,  = 0.80. 

We know [ 2 ,9 ]  that, for a single particle random walk motion in a non-interacting 
percolating host medium, k = k  at the percolation threshold pF10.592 in two 
dimensions; the random walk diffusion is Fickian above the percolation threshold. In 
the presence of a bias field, the single particle diffusion in a percolating system, even 
above the percolation threshold, seems to be non-diffusive; a heuristic argument [ 111 
suggests that the exponent k depends on the bias field and the percolation correlation 
length. At very low carrier concentrations p, the transport in our model may be viewed 
as a single particle diffusion. I n  addition to the field induced by the charge density 
gradient here, we have background charges distributed homogeneously on the empty 
sites of the percolating clusters which act as an effective inhomogeneous field on the 
neighbouring carriers. However, the magnitude of the exponent k near the percolation 
threshold is close to its anomalous diffusion [2] value f (see figure 3 ) .  A systematic 
increase in its magnitude on increasing the site concentration ( ps= 0.60-0.70) suggests 
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Figure 1. KMS displacement ofthe crime of mass against t ime at temperature J =  2.0, site 
concentration p,=U.70.  and particle concentration p=O.SO with the sample Size 60x60. 
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Figure 3. Variation of the exponent k with the site concentration p ,  at carrier concentration 
p=O.lO(0),0.20 (W.0.30 (0),0.40(OJ.O.50 (DJ,0.60(D),0.70(0),0.80(0).  Sample 
size 60x60 and temperature r=2.0. 

a non-diffusive behaviour as in  the case of global bias [7, IO]; the random distribution 
of particles and  empty sites gives rise to  local inhomogeneous fields in addition to the 
global gradient field. At this stage it is rather difficult to provide more precise estimates 
of this exponent k as a function of site concentration, other than the prediction of a 
non-diffusive transport near percolation threshold. 

c h a r g e  is transferred from the source to  the sink, as the particles execute their 
stochastic motion. In  order to  satisfy the continuity equation, the charge must be 
conserved in  steady state equilibrium, i.e. 

Qi( 1 )  = Qd 1 )  + Qb (4) 

where Qi( r )  is the amount of charge released by  the source, Qo(r) is the amount 
abonrbed a! the sink a! time step ! and Qh is the zme;n! ofrharge  remzining uncounted 
in ramified clusters. We have noticed that, in  the steady state, Qh is constant, leaving 
the flux of charge entering the system at the source the same as the outgoing flux at 
the sink. For the charge permeation through the percolating system, we define a 
permeability coefficient [17] 

P , = ( d Q l d O x  ( L l L , )  ( 5 )  
where d Q / d r  is the charge permeation rate which is the flux (in or  out) and is a 
measure of current. In  fact, the permeability coefficient has also been used as a measure 
of an effective conductivity [I81 in a similar system, and therefore we use these terms 
interchangeably. 

Thus, by measuring the slope of the  charge transfer Q(1) (at the source or  at the 
sink) against time one may evaluate the permeability coefficient P, in the steady state. 
We have studied the variation of P, as  a function of carrier concentration p at several 
site concentration above the percolation threshold and the result is presented in figure 
4. We observe that, the permeability coefficient shows a non-monotonic behaviour as 
a function of p at high site concentrations (i.e. p .  = 0.80 and 0.90, see figure 4) in which 
its growth is followed by a decay a t  a characteristic value of p .  On reducing the site 
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concentration, the permeability coefficient decreases and it approaches a constant value 
near percolation threshold on varying the  particle concentration (see figure 4). At the 
low site concentration, it appears that the geometrical ramification of the clusters, 
the field induced by the charge density gradient and the inhomogeneity caused 
by the random distribution of particles and  holes compete/cooperate in such a way 
that the carrier concentration becomes ineffective as far as the charge transport is 
concerned. 

In summary, we have presented a computer simulation model to study the transport 
of charge and  its carriers through a random percolating medium. The percolating 
clusters carry background charges and a charge density gradient field produced by a 
source and a sink a t  the opposite ends of the sample. We find that the power law 
exponent for the asymptotic behaviour of the RMS displacement exhibits a non-diffusive 
value which seems to depend on the site concentration. It is difficult to compare these 
results of our simplified model with that of experiments on dielectric measurements; 
however, such a change in the power-law behaviour seems to capture some of the 
details on the variation of the loss component of the dielectric constant in experiments 
[ 151. At high site concentration, the permeability coefficient for the charge transport 
depends nonmonotonically on the carrier concentration with a maximum at a charac- 
teristic value. Near the percolation threshold, the permeability coefficient remains 
constant on varying the carrier concentration. It decays continuously on reducing the 
site concentration and vanishes at the percolation threshold. 
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